如何進(jìn)行大數(shù)據(jù)分析及處理

| 2022-09-13 admin

大數(shù)據(jù)的分析

從所周知,大數(shù)據(jù)已經(jīng)不簡(jiǎn)簡(jiǎn)單單是數(shù)據(jù)大的事實(shí)了,而最重要的現(xiàn)實(shí)是對(duì)大數(shù)據(jù)進(jìn)行分析,只有通過分析才能獲取很多智能的,深入的,有價(jià)值的信息。那么越來越多的應(yīng)用涉及到大數(shù)據(jù),而這些大數(shù)據(jù)的屬性,包括數(shù)量,速度,多樣性等等都是呈現(xiàn)了大數(shù)據(jù)不斷增長(zhǎng)的復(fù)雜性,所以大數(shù)據(jù)的分析方法在大數(shù)據(jù)領(lǐng)域就顯得尤為重要,可以說是決定最終信息是否有價(jià)值的決定性因素?;谌绱说恼J(rèn)識(shí),大數(shù)據(jù)分析普遍存在的方法理論有哪些呢?

1.可視化分析。大數(shù)據(jù)分析的使用者有大數(shù)據(jù)分析專家,同時(shí)還有普通用戶,但是他們二者對(duì)于大數(shù)據(jù)分析最基本的要求就是可視化分析,因?yàn)榭梢暬治瞿軌蛑庇^的呈現(xiàn)大數(shù)據(jù)特點(diǎn),同時(shí)能夠非常容易被讀者所接受,就如同看圖說話一樣簡(jiǎn)單明了。

2.數(shù)據(jù)挖掘算法。大數(shù)據(jù)分析的理論核心就是數(shù)據(jù)挖掘算法,各種數(shù)據(jù)挖掘的算法基于不同的數(shù)據(jù)類型和格式才能更加科學(xué)的呈現(xiàn)出數(shù)據(jù)本身具備的特點(diǎn),也正是因?yàn)檫@些被全世界統(tǒng)計(jì)學(xué)家所公認(rèn)的各種統(tǒng)計(jì)方法(可以稱之為真理)才能深入數(shù)據(jù)內(nèi)部,挖掘出公認(rèn)的價(jià)值。另外一個(gè)方面也是因?yàn)橛羞@些數(shù)據(jù)挖掘的算法才能更快速的處理大數(shù)據(jù),如果一個(gè)算法得花上好幾年才能得出結(jié)論,那大數(shù)據(jù)的價(jià)值也就無從說起了。

3.預(yù)測(cè)性分析。大數(shù)據(jù)分析最終要的應(yīng)用領(lǐng)域之一就是預(yù)測(cè)性分析,從大數(shù)據(jù)中挖掘出特點(diǎn),通過科學(xué)的建立模型,之后便可以通過模型帶入新的數(shù)據(jù),從而預(yù)測(cè)未來的數(shù)據(jù)。

4.語義引擎。非結(jié)構(gòu)化數(shù)據(jù)的多元化給數(shù)據(jù)分析帶來新的挑戰(zhàn),我們需要一套工具系統(tǒng)的去分析,提煉數(shù)據(jù)。語義引擎需要設(shè)計(jì)到有足夠的人工智能以足以從數(shù)據(jù)中主動(dòng)地提取信息。

5.數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理。大數(shù)據(jù)分析離不開數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理,高質(zhì)量的數(shù)據(jù)和有效的數(shù)據(jù)管理,無論是在學(xué)術(shù)研究還是在商業(yè)應(yīng)用領(lǐng)域,都能夠保證分析結(jié)果的真實(shí)和有價(jià)值。

大數(shù)據(jù)分析的基礎(chǔ)就是以上五個(gè)方面,當(dāng)然更加深入大數(shù)據(jù)分析的話,還有很多很多更加有特點(diǎn)的、更加深入的、更加專業(yè)的大數(shù)據(jù)分析方法。

大數(shù)據(jù)的技術(shù)

數(shù)據(jù)采集:ETL工具負(fù)責(zé)將分布的、異構(gòu)數(shù)據(jù)源中的數(shù)據(jù)如關(guān)系數(shù)據(jù)、平面數(shù)據(jù)文件等抽取到臨時(shí)中間層后進(jìn)行清洗、轉(zhuǎn)換、集成,最后加載到數(shù)據(jù)倉(cāng)庫(kù)或數(shù)據(jù)集市中,成為聯(lián)機(jī)分析處理、數(shù)據(jù)挖掘的基礎(chǔ)。

數(shù)據(jù)存?。?/strong>關(guān)系數(shù)據(jù)庫(kù)、NOSQL、SQL等。

基礎(chǔ)架構(gòu):云存儲(chǔ)、分布式文件存儲(chǔ)等。

數(shù)據(jù)處理:自然語言處理(NLP,Natural LanguageProcessing)是研究人與計(jì)算機(jī)交互的語言問題的一門學(xué)科。處理自然語言的關(guān)鍵是要讓計(jì)算機(jī)”理解”自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計(jì)算語言學(xué)(ComputationalLinguistics。一方面它是語言信息處理的一個(gè)分支,另一方面它是人工智能(AI, ArtificialIntelligence)的核心課題之一。

統(tǒng)計(jì)分析:假設(shè)檢驗(yàn)、顯著性檢驗(yàn)、差異分析、相關(guān)分析、T檢驗(yàn)、方差分析、卡方分析、偏相關(guān)分析、距離分析、回歸分析、簡(jiǎn)單回歸分析、多元回歸分析、逐步回歸、回歸預(yù)測(cè)與殘差分析、嶺回歸、logistic回歸分析、曲線估計(jì)、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對(duì)應(yīng)分析、多元對(duì)應(yīng)分析(最優(yōu)尺度分析)、bootstrap技術(shù)等等。

數(shù)據(jù)挖掘:分類(Classification)、估計(jì)(Estimation)、預(yù)測(cè)(Prediction)、相關(guān)性分組或關(guān)聯(lián)規(guī)則(Affinitygrouping or association rules)、聚類(Clustering)、描述和可視化、Descriptionand Visualization)、復(fù)雜數(shù)據(jù)類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)

模型預(yù)測(cè):預(yù)測(cè)模型、機(jī)器學(xué)習(xí)、建模仿真。

結(jié)果呈現(xiàn):云計(jì)算、標(biāo)簽云、關(guān)系圖等。

大數(shù)據(jù)的處理

1.大數(shù)據(jù)處理之一:采集

大數(shù)據(jù)的采集是指利用多個(gè)數(shù)據(jù)庫(kù)來接收發(fā)自客戶端(Web、App或者傳感器形式等)的數(shù)據(jù),并且用戶可以通過這些數(shù)據(jù)庫(kù)來進(jìn)行簡(jiǎn)單的查詢和處理工作。比如,電商會(huì)使用傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)MySQL和Oracle等來存儲(chǔ)每一筆事務(wù)數(shù)據(jù),除此之外,Redis和MongoDB這樣的NoSQL數(shù)據(jù)庫(kù)也常用于數(shù)據(jù)的采集。

在大數(shù)據(jù)的采集過程中,其主要特點(diǎn)和挑戰(zhàn)是并發(fā)數(shù)高,因?yàn)橥瑫r(shí)有可能會(huì)有成千上萬的用戶來進(jìn)行訪問和操作,比如火車票售票網(wǎng)站和淘寶,它們并發(fā)的訪問量在峰值時(shí)達(dá)到上百萬,所以需要在采集端部署大量數(shù)據(jù)庫(kù)才能支撐。并且如何在這些數(shù)據(jù)庫(kù)之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計(jì)。

2.大數(shù)據(jù)處理之二:導(dǎo)入/預(yù)處理

雖然采集端本身會(huì)有很多數(shù)據(jù)庫(kù),但是如果要對(duì)這些海量數(shù)據(jù)進(jìn)行有效的分析,還是應(yīng)該將這些來自前端的數(shù)據(jù)導(dǎo)入到一個(gè)集中的大型分布式數(shù)據(jù)庫(kù),或者分布式存儲(chǔ)集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡(jiǎn)單的清洗和預(yù)處理工作。也有一些用戶會(huì)在導(dǎo)入時(shí)使用來自Twitter的Storm來對(duì)數(shù)據(jù)進(jìn)行流式計(jì)算,來滿足部分業(yè)務(wù)的實(shí)時(shí)計(jì)算需求。

導(dǎo)入與預(yù)處理過程的特點(diǎn)和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會(huì)達(dá)到百兆,甚至千兆級(jí)別。

3. 大數(shù)據(jù)處理之三:統(tǒng)計(jì)/分析

統(tǒng)計(jì)與分析主要利用分布式數(shù)據(jù)庫(kù),或者分布式計(jì)算集群來對(duì)存儲(chǔ)于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求,在這方面,一些實(shí)時(shí)性需求會(huì)用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲(chǔ)Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。

統(tǒng)計(jì)與分析這部分的主要特點(diǎn)和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對(duì)系統(tǒng)資源,特別是I/O會(huì)有極大的占用。

4.大數(shù)據(jù)處理之四:挖掘

與前面統(tǒng)計(jì)和分析過程不同的是,數(shù)據(jù)挖掘一般沒有什么預(yù)先設(shè)定好的主題,主要是在現(xiàn)有數(shù)據(jù)上面進(jìn)行基于各種算法的計(jì)算,從而起到預(yù)測(cè)(Predict)的效果,從而實(shí)現(xiàn)一些高級(jí)別數(shù)據(jù)分析的需求。比較典型算法有用于聚類的Kmeans、用于統(tǒng)計(jì)學(xué)習(xí)的SVM和用于分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點(diǎn)和挑戰(zhàn)主要是用于挖掘的算法很復(fù)雜,并且計(jì)算涉及的數(shù)據(jù)量和計(jì)算量都很大,常用數(shù)據(jù)挖掘算法都以單線程為主。

整個(gè)大數(shù)據(jù)處理的普遍流程至少應(yīng)該滿足這四個(gè)方面的步驟,才能算得上是一個(gè)比較完整的大數(shù)據(jù)處理。